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AN ELEMENTARY STATISTICAL APPROACH TO
MEASURING UNCERTAINTY IN A COST ESTIMATE RANGE

P. R. Garvey*

The intent of this article is to suggest an approach to developing a proba-
bilistic cost range for a system in the conceptual design phase. This methodol-
ogy has been applied to a recent software cost study for a large scale military
acquisition program, hence the emphasis in this paper will be on the problem

- of determining the most probable software development cost interval.

INTRODUCTION When a project is in concept definition, or
initial development, the precise determination

- In this article we will consider a system as of system cost is usually not possible. For soft-
a regularly interacting or interdependent ware intensive systems, estimates of Computer

-. group of items comprised of hardware and/or Program Configuration Item (CPCI) size prior
software elements forming a unified whole. to FSED are subjective, and are often based on

comparable software tasks, or from advanced
In many large scale command and control prototype designs. The variability in a software

projects, Prime Mission Product (PMP) cost es- cost estimate is directly related to the variabil-
timates developed for Full Scale Engineering ity in CPCI size, which may vacillate around
Development (FSED) are usually reported as a data points from low = a', most likely = m', to
range, and hence are not necessarily intended high = b' estimates of lines of code (LOC):
for budgetary purposes, but rather to provide
information to the respective Program Office LOCrange: a' < m' < b'.
to aid in system engineering trade-off studies

* and acquisition planning activities. A hierarchical overview of the procedures
for developing a software cost range is shown
in Figure 1.

'The sc s and coniclusions contained in this document are
those ot the author and should not be interpreted as necessariy
reprscenting the official policy, either expressed or implied, of
the United States government.

1rhi, %%ork %%as sponsored b% the Electronic Systems Division.
Air Force Ssstcms Command. Hansconm AFB, Bedlord, Massa-
chuLsts under Contract No. F1 9628-84-C-000I.
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THE EXPECTED COST

SYSTEM /In circumstances where it becomes neces-
sary to report a system cost as the most repre-
sentative point in the cost estimate range, a
useful measure of central tendency to deter-

CPCI, CPC|2  CPCIn  mine is the expected cost. The expected cost is
SIZE SIZE SIZE the point of the center of gravity in the system

cost range. Mathematically, the expected cost
is defined by

<m,' < bl a2' < m < b2 an' < mn < bn J = = xf(x)dx I: [a _< x < b]
OCRANGE LOC RANGE LOC RANGE

where X denotes the cost random variable, and
f is the continuous probability density function
(pdf) of X. The integral limits a and b repre-
sent respectively the low and high extrema in

SOFTWR the cost interval I. By definition, f(x) must sat-
CSOFTMARE isfy the following propertiesI COST MODEL  -

GENERATOR * f(x) _> 0 in I, I: [a < x < b]

* f(x)dx = 1 for the continuous case
SK PER CPCI1  $K PER CPC 2  $K PER CPCIn,

a, < mI < b, a2 < m2 < b2  an < ni < bn

Since the true underlying distribution of X is
unknown, a probability distribution of cost

Figure 1. System Overview may be expressed by choosing an appropriate
probability function that most accurately re-
flects the unique system cost behavior. Define f
as the pdf that is the analyst's "best" subjec-
tive approximation to the true underlying den-

It is not my intention to address the inher- sity function f. Thus
ent estimation error associated with many of
the parametric, or non-parametric software A
cost models. Rather, the following discussion f = f
attempts to provide a non-rigorous method to
measure the degree of uncertainty in a soft- We will further require the approximating j
ware cost estimate range generated when only probability function to satisfy the boundary
subjective technical assessments on LOC are conditioris t(a) = 0 and f(b) = 0. The maximum
available. Although this probability technique value off is' defined by
was developed for treating software costs, it
can easily be extended to any other costs, such A A
as hardware, which are stated as a range. f(m) max f(x) I: [a __ x _ b]

xc I xeI "'.7-
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Several classes of probability functions satisfy g1(x): 1: [a, bi
the above criteria. This article will consider ba x b

" A polynomial density function
" A triangular density function to the unit interval Z

Expressions for their means and variances will
be derived. pi(z): Z: [0, 1]0 z I

by the linear transformation

A Polynomial Density Function x - a

Consider the situation where an analyst ob- b - a
tains subjective values of a and b, but the most and form a 4-degree unimodal polynomial den-
likely value m is not given as a point, but as a
percentage from the lower bound of I. Define a sity function, pi(z) (j 1 or 2), on the Zr0, j inter-
4-degree unimodal polynomial density function val as shown in Figure 2.
by g(x) where

4

g(x)= EC,, x", I: [a x b] p

which also satisfies the conditions that g(a) = PI
0, and g(b) = 0. Further, assume there exists a
unique maximum point m contained in I such
that

0 .3 1/2 .7 1
g(m) = max g(x)

xEI Z

The following discussion considers two distinct
tunctional variations of g(x). These forms, de- Figure 2. A Polynomial Oensity Function
noled by g,(x) (j = I or 2), are each uniquely
determined by the location of their mode m,
(j I or 2), where

g,(m,) = max g(0.3(b - a)+a)xd The value of g, (mi) (j = I or 2) when trans-

formed into the unit Z interval occurs at the

g(m) = max g(0.7(b - a)+a) points
x( I (0.3(b - a) + a) - az, =b -- 0.3,or

Expressions for the mean and variance of g,
will be derived.

(0.7(b - a) + a) - a
To reduce the computational complexity b - a

when computing the mean and variance of g,
transform the initial interval I as shown in Figure 2.

t. 2= I. .. . ... . '*.' 

r'll , ,, . -'L , '4 . .D ~ a- t a " "- _l' •€ " J t%



• . , .

The equations representing pi (J = 1 or 2) are appoximately 30% from the lower bound of I,
then we could use p, as our approximating pdf,

= 1 -I -(1- Z)2], 0 Z < I from which

1
15 E(X)=-- (5a + 3b) = $37.5

P2 = -.f z_(1 - z2), 0 5z < I

ax = $3.9
Note that this density function is symmetric
about 1/2, and The Triangular Density Function

p1(z) = P,(1 - z), 0 < z < 1 When little information is available other
than subjective estimates on the extreme val-

The expected value of pi (J = 1 or 2) is defined ues of the cost interval I, it is often convenient
bv to apply a triangular density function r(x)

through the cost range. Classically, r(x) has the
E(Z) = Iz zpj(z)dz Z: [0, 1] representation

and the variance a is computed from T(x) = a- (1 - c -  lxi), lxI < a (Ref. 2)

= E(Z2) - and is symmetric about the origin in the inter-val -a < x < a. For our purposes, we will de-
where fine a similar functional form, f, but one that

is bounded by x > 0, and satisfies the bound-
E(Z ) = 3 z2p(z)dz Z: [0, 1] ary conditions, f,(a) = 0, and f,(b) = 0 with

Z

On the unit Z[0,11 interval we then have f,(m) = max f,(x) I: [a _< x _< b]
xEI

3 5
E(Z1) = , E(Z2) - Such a function is shown below in Figure 3.

17
az - 448 for each j = or 2

Mapping these values back into our original in-
terval I we have

E(X,) = -(5a + 3b) E(X,) = -(3a + 5b) c

• 17'
S448 (b-a) 2 for eachj = I or2 _x_,_

- 0 a m b +o

Note that these expressions for the expectation
and variance are explicitly independent of m.

Figure 3. A Triangular Density Function
As, an application, suppose our cost inter- -

v'al I is determined to he I: [$30, $50] where
a = $30 and h = $50. Further, ii the "best" ex-
pert assessme n places the most likelk Value at

. .. .1
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,. The probability density function for f, is can be used to establish a confidence criteria
defined by on the bound of a cost estimate range. The next

section applies these statistical measures to
.. c the problem of establishing a conservative

m-a (x - a) if 0 < a < x < m probabilistic cost range based on information
f, = obtained from a and o0.

14 r-b (x - b) if m < x < b THE CHEBYSHEV BOUND

where c, the peak value (modal point) of the The integrity of the software cost estimate

triangular density is given by: 2/(b - a). Based and any subsequent statistical inference is de-
otisgul density we caen ompute thb ft to Bpendent on the assumption that estimated
on this density, we can compute the first two CPCI size adequately reflects reality. Under
moments of f. They are this assumption conservative probability state-

Ements can be made about the likelihood that
! xthe estimated cost range will capture the true

1cost, that is, to be within some Chebyshev
1. (a + m + b) if m is known bound. In theory, the Chebyshev bound states

that the true value of the cost random variable
I X differs from the expected costuI by no more

1 than ka standard deviations, with probability

2 at least equal to 1 - 1/k, k > 1:

Pr (IX - <  ka)_> 1- 1/k2.
r# fd 1 1

E(X2) x x x)x 6 (b - a) No a priori assumption about the under-
lying nature of the cost random variable X is

I 1 made other than that pand a exist. A sketch of
m -a1 (m3(3m - 4a) + a4) this cost range is shown below.

+ 1 m (m(3m - 4b) + b4)}

The cost variance, denoted by u is defined by

"x = E(X2) - E(X)'

which reduces to

' - 118 (m - a) (m - b) + (b - a)2-. -ko p + ko

- These simple measures of central tendency
are useful for establishing the basis for a cost Pr (Ix -pl < ka) -1-/k 2

estimate range when little specific information
regarding the nature of a system is available.
Measures of expectation, determined by the Figure 4. A Chebyshev Cost Range
pdf chosen, inform the analyst where the un-
certainty is greatest, skewed to the left or to
the right of the modal point. The variance a-,

....... -" " -- - -... ........ •...... .



Applied to a hypothetical system, suppose we REFERENCES
determine from a selected density function
such as the polynomial or triangular pdf, that 1. Keefer, Donald L. and Bodily, Samuel

E., "Three-Point Approximations for
E(X) = $50,000 and Continuous Random Variables", Mgmt.

Sci., Vol. 29, No. 5 (1983).
ax = $1,500

2. Feller, William, "An Introduction to
then with an interval length of two standard Probability Theory and Its Applica-

.x. deviations from the mean there is at least a tions," John Wiley & Sons, N.Y., 1971.
75% chance that the true subsystem cost will
fall in the cost range $47,000 - $53,000. That is,
using the Chebyshev inequality for
k = 2, the PAUL R. GARVEY is a Member of the Techni-

cal Staff at The MITRE Corporation, Bedford,
Pr ($47,000 _< X - $53,000) > 0.75 Massachusetts.

CONCLUSION

The problem of determining a three point
approximation to a continuous random vari-
able with an unknown distribution is a popular
topic among researchers in the Management
Sciences area (Ref. 1). Some mean and variance
approximation algorithms are computationally
complex and require time consuming computer
simulation.

Current research has yet to adequately de-
velop a procedure which models this problem.
The informal techniques outlined in this paper
support an analytical rationale for assessing
uncertainty in a cost estimate. These non-
rigorous procedures form the basis of a deci-
sion tool that provides the analyst with a
method to make conservative probability state-
ments about cost intervals when only subjec-
tive technical inputs are available.
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